

Contraception

Contraception 73 (2006) 134-144

Review article

Medical eligibility criteria for new contraceptive methods: combined hormonal patch, combined hormonal vaginal ring and the etonogestrel implant

Mary E. Gaffield^{a,*}, Kathryn M. Curtis^b, Anshu P. Mohllajee^b, Herbert B. Peterson^a

^aDepartment of Reproductive Health and Research, World Health Organization, CH-1211 Geneva 27, Switzerland

^bWHO Collaborating Center in Reproductive Health, Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA

Received 1 August 2005; accepted 11 August 2005

Abstract

To review evidence on the combined hormonal patch, combined hormonal vaginal ring and the etonogestrel implant, with a focus on safety and effectiveness of use among women with special health conditions, we searched MEDLINE, Pre-MEDLINE and the Cochrane Library for reports published from 1980 through March 2005. Articles eligible for review included 11 on the hormonal patch, nine on the hormonal ring, and 11 on the etonogestrel implant. Limited evidence suggests patch efficacy is lower among women >90 kg. No evidence was identified for vaginal ring use among women with medical conditions. A single small study found that etonogestrel implants had no adverse effects on bone mineral density among women 18–40 years old. Limited evidence also suggests no adverse effects of the etonogestrel implant on lactation parameters or infant development among users enrolled 28 to 56 days postpartum and followed for 4 months. © 2006 Elsevier Inc. All rights reserved.

Keywords: Evidence-based guidelines; Combined hormonal patch; Combined hormonal vaginal ring; Etonogestrel implant

1. Introduction

Every year, approximately 210 million women become pregnant and as many as 80 million of these pregnancies are unplanned [1]. Since the introduction of oral contraceptives, research has focused on modifying the dosage of estrogen and progestogen formulations to improve safety and acceptability, and on identifying new contraceptive delivery systems to increase effectiveness by improving user compliance [2]. Poor adherence to pill regimens is responsible for the substantial difference between the percentage of women experiencing an unintended pregnancy within the first year of use of oral contraceptives with perfect use (0.3%) and typical use (8%) [3].

Development of a combined hormonal transdermal contraceptive patch was initiated in the early 1990s, and the first patch was approved by the US Food and Drug Administration in early 2002 under the names Ortho EvraTM/ EvraTM [4]. The contraceptive patch is a 20-cm² system composed of three layers: an outer protective polyester layer,

a medicated adhesive middle layer and a release liner that is removed prior to patch application. The patch has been designed to mimic the 28-day dosing schedule of combined oral contraceptives (COCs): during the 21 days of active hormone delivery, the patch releases 150 μ g of norelgestromin (NGMN) and 20 μ g of ethinyl estradiol (EE) daily to the systemic circulation; afterwards, there is a 7-day patch-free (i.e., hormone-free) period. Application sites for the patch include the buttocks, upper outer arm, lower abdomen or upper torso [5].

The combined hormonal vaginal ring (NuvaRing[®], Organon, West Orange, NJ, USA) is a newly approved contraceptive delivery system that follows a 28-day cycle similar to COCs: each cycle, the ring is worn for 21 days, followed by seven ring-free days. The vaginal ring is a lightweight ring made of ethylene vinyl acetate (EVA) copolymer that continuously releases 120 μ g of etonogestrel and 15 μ g of EE daily [6]. At the end of every 28-day cycle, a new vaginal ring is inserted into the vagina.

In 1998, an etonogestrel implant (Implanon[®]) developed by NV Organon (Oss, The Netherlands) was introduced in Indonesia [7]. This implant is a single rod releasing the desogestrel metabolite, etonogestrel (3-keto-desogestrel),

^{*} Corresponding author. Tel.: +41 22 791 1806; fax: +41 22 791 4189. *E-mail address:* gaffieldm@who.int (M.E. Gaffield).

^{0010-7824/\$ –} see front matter ${\rm \textcircled{C}}$ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.contraception.2005.08.002

which is approved for up to 3 years of use [8]. The implant is made of EVA, is 40 mm in length and 2 mm in diameter, and contains a core of 68 mg of etonogestrel [9]. At insertion, approximately $60-70 \mu$ g/day of etonogestrel is released, with the rate falling steadily to about 25–30 μ g/day by the end of the third year [10]. Studies indicate that ovulation suppression accounts for nearly all of the contraceptive effect of the etonogestrel implant over the 3 years [11]. In addition, impaired cervical mucus and poor sperm penetration may contribute to the contraceptive efficacy, and suppression of endometrial development has been shown as well [11]. After discontinuation, serum concentrations of etonogestrel fall to undetectable levels within 1 week [10], and ovulation occurs within 6 weeks [12].

We conducted systematic reviews of published evidence on the safety of the commercially available contraceptive patch (Ortho EvraTM/EvraTM), vaginal ring (NuvaRing[®]) and etonogestrel implant (Implanon[®]) for women of reproductive age according to the 77 medical conditions identified by the World Health Organization (WHO) for eligibility for contraceptive use [13]. In this report, we describe the evidence obtained through these reviews, which was prepared for an Expert Working Group of international family planning experts convened by WHO in October 2003, to develop and revise medical eligibility criteria for contraceptive use. This review also includes evidence identified since the 2003 meeting through March 2005.

2. Materials and methods

We searched MEDLINE, Pre-MEDLINE and the Cochrane Library for reports published in English from 1980 through March 2005 relating to the use of the combined hormonal patch, combined hormonal vaginal ring or etonogestrel implant among premenopausal women of reproductive age for 77 conditions included in WHO medical eligibility criteria guidelines. In addition, we included published reports from pharmacokinetic studies to supplement evidence from clinical studies. The following terms were used to retrieve reports from MEDLINE and Pre-MEDLINE: "contraceptive agents, female" AND "patch"; "contraceptive agents, female" AND "ring" AND "vagina"; and "Implanon OR (etonogestrel and implants)". Search terms to identify Cochrane reviews included the following: "contracept* AND patch", "contracept* AND ("vagina" OR "ring"); and "contracept*" AND "implant". We handsearched reference lists from articles identified through bibliographic database searches to include additional articles relevant for the reviews.

The search strategy identified a total of 316 articles and one Cochrane review for the three contraceptive methods. Articles that examined the safety or effectiveness of these methods among women with a specific health characteristic or condition were considered as direct evidence for this systematic review. Since we identified very little direct evidence, we included articles among healthy women that examined safety or effectiveness of use of these contraceptive methods as indirect evidence. We excluded articles without original data, review articles, studies of postmenopausal women, studies of hormonal rings with hormone formulations different than NuvaRing[®] and studies of implants releasing progestogens other than etonogestrel.

Eleven articles on the patch and nine on the vaginal ring were eligible for review. We did not include the Cochrane review because the two randomized controlled trials (RCTs) on the patch were already retrieved by our search, and no RCT on the vaginal ring was identified. Eleven articles on the etonogestrel implant were eligible for the review.

Evidence from each study was summarized on a standard abstract form [14], indicating the study design, study population, main exposures and outcomes, and potential threats to internal validity (i.e., selection bias, reporting bias, misclassification, loss to follow-up, etc.). The quality of the evidence presented in each individual study was assessed using the Grades of Recommendation Assessment, Development and Evaluation (GRADE) System, which assigns a rating of very low, low, intermediate or high according to the strength of the study design and the interval validity of the study [15]. We summarized ratings across individual studies to reflect the quality of the body of evidence for each new contraceptive method. We were unable to compute summary measures of association (i.e., Peto odds ratios) due to the heterogeneity among study populations and dissimilar study designs.

3. Results

3.1. Combined hormonal patch

Direct evidence regarding use of the combined hormonal patch among women with health conditions was available for two conditions—age and obesity (Table 1). Due to the lack of evidence for women with other medical conditions, we reviewed evidence among healthy women as indirect evidence.

3.1.1. Age

No serious adverse events were reported by two small, noncomparative studies of healthy adolescents using the patch [16,17]. Thirty-one percent of users complained of breast discomfort and less than 15% experienced headaches, spotting, cramping or bleeding between menses.

3.1.2. Obese women

Limited evidence from two studies found that heavier women may have a greater risk of contraceptive patch failure. A North American trial reported five pregnancies among patch users, of which four were attributed to patch failure [18]. Body weight among the women who experienced a patch failure ranged from 48.2 to 93.2 kg (median=74.5 kg). Similarly, a prospective study found that the incidence of pregnancy among contraceptive patch

Table 1				
Evidence on	the	combined	hormonal	patch

Author, year, reference #	Study design	Population	Outcome measure	Results	Grading
Rubenstein et al., 2004 [16]	Noncomparative study	50 women	Compliance, adverse effects	Follow-up: 80% at 1 month, 62% at 3 months; compliance: 87% of girls in study at 3 months	Very low
	3 months USA	15–18 years <90 kg		No pregnancies Adverse effects: 31% had breast discomfort, <15%	
				reported more headaches, spotting, cramping, bleeding between menses	
Logsdon et al., 2004 [17]	Noncomparative study	62 women	Compliance, adverse events	17.6% discontinued using patch— <u>Reasons for</u> discontinuation: 5% skin irritation, 5% patch detachment, 6.7% economics	Very low
	10 cycles USA	Mean=17.9 years		No pregnancies	
Pierson et al., 2003 [22]	Randomized open-label trial	124 women	Follicular size, ovulation defined by disappearance	Follicle size significantly smaller for patch vs. COC	Intermediate
	5 cycles (dosing error in Cycle 4): 1) 10 days patch or 7 days patch+3 days patch-free	52 patch, 72 COC	of follicle, side-effects	group during normal cycle and cycle with dosing error. Occurrence of ovulation significantly	
	USA and Canada	18–35 years	~	less in patch group	
Dittrich et al., 2002 [21]	Randomized study	610 women	activity, adverse events	Compliance: 94.7% (P) vs. 78% (COC)	Low
	4 cycles	3 patch size groups: 10, 15, 20 cm ² ($n=450$) vs. 150 COC		20-cm ² patch (P) vs. COC: 6.2% (P) vs. 7.2% (COC) ovulated; 5.4% (P) vs. 4.3%	
	Europe, USA, South Africa	18-45 years		(COC) luteal activity; 88.4%anovulation P and COC;6.7% (P) skin reaction	
Audet et al., 2001 [18]	Randomized, open-label trial	1417 women	Pearl indices, adverse events	Pearl index (patch vs. COC): 1.24 (0.15–2.33) vs. 2.18 (0.57–3.80) overall, 0.99 (0.02–1.96) v. 1.25 (0.02–2.47) due to	Intermediate
	6 and 13 cycles	812 patch vs. 605 COC		method failure 4 pregnancies in users weighing 80, 93.2, 74.5,	
	USA and Canada	18-45 years		48 kg <u>Adverse events:</u> migraine, cholecystitis, paresthesia in arm.	
				Complaints (patch vs. COC): 18.7% vs. 5.8% breast dis comfort, 13.3% vs. 9.6% dysmenorrhoea, 20.2% vs.	
C	NT	1171 ((1)1	Deed in dee	0% application site reaction	T
Smallwood et al., 2001 [19]	Noncomparative open-label study	1171 (6 cycles) and 501 (13 cycles)	Pearl index, adverse events	Pearl cycle 1–6: 0.4% (overall and due to method failure); Cycles 7–13: 0.7 (overall), 0.4 (method failure)	Low
	6 and 13 cycles			Weights (kg) of women who experienced method failure:	
	Europe, Israel, Australia, USA			93.2, 89.5, 90, 61.8, 95 kg <u>Adverse events</u> : cervix adenocarcinoma in situ, menorrhagia, pulmonary embolism (protocol violation)	

(continued on next page)

Table 1 (continued)

Author, year, reference #	Study design	Population	Outcome measure	Results	Grading
Helmerhorst et al., 2000 [20]	Randomized, open-label trial for 6 and 13 cycles Europe and South Africa	1517 women 861 patch, 656 COC 18–45 years	Pearl indices, adverse events	Pearl index (patch vs. <u>COC</u>): 0.88 v. 0.56 <u>Complaints</u> (% patch vs. <u>% COC</u>): breast discomfort (25% vs. 9.5%), headaches (20% vs. 24%), application site reaction (14% vs. 0), nausea (12% vs. 6%), abdominal pain (11% each), dysmenorrhoea (5% each)	Low

users increased with increasing body weight [19]. Six pregnancies occurred during patch use from which five were attributed to method failure, and four of these five women weighed 90 kg or more.

3.1.3. Indirect evidence

Two studies (one randomized [18], one noncomparative [19]) reported a total of six serious adverse events attributed to patch use among healthy women—migraine, cholecystitis, paresthesia in the arm of patch application, adenocarcinoma in situ of the cervix, menorrhagia and pulmonary embolism (Table 1). The pulmonary embolism was attributed to a protocol violation and resolved with therapy. Compared with women using COCs, patch users were significantly (p<.05) more likely to experience skin site reactions [18,20–22], breast discomfort [18,20], dysmenorrhea [18] and nausea [18–21]. Elevations in mean total cholesterol and triglyceride levels were observed in patch users compared with COC users; however, the changes were not considered clinically meaningful [18,21].

3.1.4. Pharmacokinetic evidence

In addition to the epidemiologic evidence, we examined pharmacokinetic studies comparing the patch with COCs. Three randomized studies investigated the pharmacokinetics of patch hormones under various conditions in healthy women [23–25]. For these studies, reference ranges for NGMN and EE were developed according to calculated average serum concentrations in 90% of individual subjects taking an oral equivalent of NGMN and EE over a 24-h period, to identify efficacious concentrations of NGMN and EE released by the patch [24]. In general, regardless of patch application site [23], dermal exposure to heat, humidity, or exercise [24], or duration of patch wear [25], NGMN and EE levels remained within the reference range.

3.2. Combined hormonal vaginal ring

Evidence directly applicable to the health effects of vaginal ring use among women with medical conditions

was not available. Therefore we reviewed evidence from five studies among healthy women as indirect evidence (Table 2).

3.2.1. Indirect evidence

Across five studies, three serious adverse events were reported: two cases of deep vein thrombosis (DVT) and one case of strabismus [26,27]. The DVT cases were believed to be related to ring use. The most frequent complaints of ring users included headaches (5.8%) and vaginitis (5.6%); fewer than 5% of users experienced leukorrhea, device-related events, weight increase, nausea, emotional lability, breast tenderness, dysmenorrhea, vaginal discomfort, changes in Papanicolaou (Pap) smear grade and acne [26,28]. Ring users participating in one randomized trial [27] were more likely to experience leukorrhoea (3.5% vs. 0.2%) and vaginitis (3.9% vs. 1.0%) compared with COC users; in another randomized trial [28], more ring users complained of vaginitis (4.1% vs. 1.6%) and decreased libido (8.3% vs. 0) than COC users. According to a noncomparative study, cervical cytology was normal for 98% of women (2271/ 2322) from baseline through 13 cycles. For 33 women, cervical cytology was normal at baseline and shifted to a low-grade squamous intraepithelial lesion during the study. Another seven women experienced a shift from normal baseline cytology to abnormal, high-grade squamous intraepithelial lesion-carcinoma in situ at the last assessment. Eleven women were diagnosed with a low-grade squamous intraepithelial lesion at baseline and Pap smear results returned to normal for eight of them after 13 cycles and did not worsen for the remaining three women [26]. Studies investigating the cervicovaginal epithelium and vaginal flora pre- and post-ring use did not detect meaningful changes in columnar or squamous epithelium [6], the vaginal flora [29], or presence of human papilloma virus (HPV) [6]. A case of mild vaginal dysplasia was diagnosed in one ring user who had polyclonal aneuploidy prior to participating in the study [6]. Finally, in comparative studies [27,30-32], no observed clinically relevant differences in blood pressure, blood chemistries, heart rate, adrenal and thyroid function, carbohydrate metabolism or hematology

Table 2
Evidence on the combined hormonal vaginal

Author, year, reference #	Study design	Population	Outcome measure	Results	Grading
Oddsson et al., 2005 [27]	Randomized open-label trial	1030 healthy women	Adverse events, tolerance, contraceptive efficacy	Pregnancies: 10 total=ring: 5, COC: 5. 5/10 were protocol violations	Intermediate
	13 cycles	≥ 18 years		Pearl indices: ring=1.23 (95% CI 0.40-2.86), COC=1.19 (0.39-2.79)	
	9 European countries, Brazil and Chile	512 NuvaRing, 518 COC		Serious events: deep vein thrombosis (ring), hypertension (COC) Adverse events: 28.9% ring, 22.1% COC due to method (confirmed by author); vaginitis (3.9%) and leukorrhoea (3.5%) reported more by ring users	
Magnusdottir et al., 2004 [31]	Nonrandomized study	87 healthy women	Hemostatic variables: coagulation and fibrinolysis markers; adverse events	Procoagulation variables: factor VII activity higher (p<.001) at Cycle 6 for ring vs. COC users; post- treatment levels not significantly different	Low
	6 cycles	18-40 years		Anticoagulation variables: higher protein C levels for ring vs. COC at Cycle 3 (p<.001), at Cycle 6 (NS) and post-treatment (NS); higher antithrombin III for ring vs. COC; protein S higher for ring at Cycle 3 but lower than COC at Cycle 6 and post-treatment	
	Iceland	44 NuvaRing, 43 COC		Profibrinolysis variables: plasminogen activity increased for both (Cycles 3 and 6), activator t-PA lower for ring vs. COC; plasmin– antiplasmin (PAP) complexes elevated at Cycles 3 and 6 for both; plasminogen, PAP complexes and t-PA returned to baseline levels for ring and COC post-treatment <u>Antifibrinolysis</u> : no significant differences between ring and COCs <u>Fibrin turnover</u> : no significant differences between ring and COCs. No serious adverse events reported	
Tuppurainen et al., 2004 [30]	Nonrandomized study 6 cycles	83 healthy women 18-40 years	Lipid profile, sex hormone binding globulin (SHBG), corticosteroid binding	Total cholesterol unchanged with ring HDL-cholesterol significantly higher	Low
r 1	,	·	globulin (CBG), adverse events	for ring cycles 3 and 6 vs. COC $(p < .01)$, HDL (2) increased with ring, HDL (3) decreased with ring	
	Finland	40 NuvaRing, 43 COC		<u>LDL-cholesterol</u> lower at cycle 3 and 6 for ring vs. COC <u>Triglycerides</u> increased for both methods <u>SHBG</u> increased for both methods, levels higher for ring $(p < .01)$ <u>CBG</u> increased for both, levels lower for ring vs. COC $(p < .01)$ <u>Adverse events</u> : strabismus and deep vein thrombosis (ring), depression (COC)	
Bjarnadottir et al., 2002 [28]	3 trials: 1 randomized, 2 non-randomized 6 cycles Europe	247 healthy women 18–40 years 121 NuvaRing, 126 COC	Adverse events, cycle control	Adverse events: 33.9% ring and 24.6% COC had a minor adverse event; in the ring group, <5% each for acne, breast discomfort, device-related discomfort, headache, nausea, leukorrhoea, vaginitis, vaginal discomfort, weight increase,	Low

(continued on next page)

Table 2 (continued)

Author, year, reference #	Study design	Population	Outcome measure	Results	Grading
Dieben et al., 2002 [26]	Pooled, 2 noncomparative studies	2322 healthy women	Pregnancy rate, adverse events, cycle control	Pregnancies: 21	Low
	13 cycles	18-40 years		Pearl indices: 1.18 (95% CI 0.68–1.69) overall, 0.77 (95% CI 0.34–1.4) per protocol; pregnancy rate=1.18%	
	Europe, USA, Canada			Adverse events: 5–6% headaches, vaginitis, bleeding/spotting; <5% had leukorrhoea, weight increase, device-related discomfort; <4% nausea, emotional lability, breast tenderness, acne, dysmenorrhoea, vaginal discomfort	
Roumen et al., 1996 [6]	Prospective, noncomparative study 20 cycles	76 healthy women 18–35 years	Cytological changes in cervix and vagina, bacterial flora, HPV status, morphology	No cytology changes, HPV detected in 3 subjects with reversion to negative in 2, aneupoloidy in 11 subjects with 7 changing to diploid, could not	Very low
	Netherlands	18–55 years	of cervix	establish significance on vaginal flora, 1 case of mild dysplasia diagnosed	
Davies et al., 1992 [29]	Prospective, noncomparative study 1 cycle for varying periods of time	59 healthy women Ring use groups: 15=21 days, 15=28 days, 14=42 days, 15=56 days	Vaginal flora (<i>Gardnerella vaginalis</i> , streptococci, yeast), gonorrhea, chlamydia	No significant changes in pre- or post- ring vaginal flora, bacteria or inflammatory cells	Low
	UK				

were observed as a result of ring use compared with women using COCs.

3.2.2. Pharmacokinetic evidence

The pharmacokinetics of the vaginal ring were compared with those of a COC [150 μ g desogestrel, 30 μ g EE] in a randomized, crossover trial [33]. Although maximum serum concentrations were lower and the time to reach peak concentrations was longer with the ring, the absolute bioavailability of hormones from the ring was either higher (progestins) or similar (estrogens) to hormones delivered by COCs. No difference in progestin half-lives was observed between the two groups; however, the half-life of estrogen with the ring extended 15 h beyond that measured with the COC.

3.3. Etonogestrel implant

Evidence from studies directly relevant to three medical conditions—age, breastfeeding and endometriosis—was available for the etonogestrel implant (Table 3). Due to the lack of evidence for other medical conditions, we reviewed evidence among healthy women as indirect evidence for this implant.

3.3.1. Age and the effects of etonogestrel implants on bone mineral density

In a small study investigating bone mineral density (BMD) among 73 women, 18–40 years of age, using the etonogestrel implant or a hormone-free IUD, increases in

BMD were recorded at the lumbar spine, femur and radius, but not at the femoral neck over 2 years [34]. Regardless of anatomical site or age and weight at baseline, BMD did not significantly differ between etonogestrel implant and IUD users, and estrogen levels among etonogestrel implant users were not correlated with BMD. We did not identify any studies of etonogestrel implant use and effects on BMD for the age groups of greater concern — those less than age 18 and greater than age 45.

3.3.2. Breastfeeding

According to a study of breastfeeding women who were enrolled 28 to 56 days postpartum, use of the etonogestrel implant did not significantly affect parameters of breastfeeding (milk volume, content, production) or infant growth or development compared with nonhormonal IUD users over a 4-month period [35].

3.3.3. Endometriosis

In a case series of five women with severe pelvic endometriosis, etonogestrel implant treatment offered relief from painful symptoms in all five women over the period of etonogestrel implant use, which varied from 3 months to 3 years [36]. No adverse events occurred.

3.3.4. Indirect evidence

In prospective studies where healthy women were randomly assigned to use etonogestrel or levonorgestrel (LNG) implants, no significant differences between

Table 3					
Evidence	on	the	etonogesti	rel	impl

Author, year, reference #	Study design	Population	Outcome measure	Results	Grading
Yisa et al., 2005 [36]	Case series 3 years	5 women 35–45 years	Treatment of symptoms due to severe	Implant relieved pain in 5 women and no adverse events reported	Very low
	UK	,	endometriosis	1.	
Biswas et al.,	Randomized,	80 healthy women	Liver function tests [total	Conjugated bilirubin: 7-fold increase	Intermediate
2004 [40]	comparative study		and unconjugated	for both methods at 2 years, but	
			bilirubin, albumin, liver enzymes—alanine	levels within normal population	
	2 years	29.1±4.6 years	transferase (ALT),	range AST and LDH levels higher for	
	2 9000	2311 <u>_</u> 110 Julio	aspartate transaminase	Implanon at year 1 ($p < .01$)	
	Singapore	40 etonogestrel,	(AST), alkaline	GGT levels increased for both	
		40 LNG implant	phosphatase (ALP),	implants from baseline	
			gamma-glutamyl transferase (GGT) and	Serum albumin: no significant changes for either method	
			lactate dehydrogenase	changes for entier method	
			(LDH)]		
Smith and	Retrospective	190 women	Continuation rates,	88% continued etonogestrel implant	Low
Reuter, 2002	chart review and		adverse events	use for 6 months, 78% for	
[42]	mailed survey	12 51		12 months; no pregnancies Among removals: 34% bleeding	
	1 year UK	13-51 years		problems, 24% mood swings,	
	on			17% headache, 12% weight gain,	
				10% desired pregnancy	
Biswas et al.,	Randomized	80 women	Oral glucose tolerance	At 24 months, 2-h response to	Intermediate
2001 [38]	comparative study	10 40	test, plasma glucose and	glucose was 10% higher than	
	2 years Singapore	18–40 years 40 etonogestrel,	insulin levels	baseline for etonogestrel implant $(p < .05)$; 2-h response for insulin	
	Singapore	40, LNG implant		increased 70% from baseline for	
		, I		etonogestrel implant (p<.05).	
				Fasting levels of glucose and insulin,	
				and levels of HbAC consistent over	
				time, except for significant increase in fasting levels of insulin at	
				24 months. Values were within WHO	
				criteria for impaired glucose tolerance	
Beerthuizen	Comparative study	73 women	Bone mineral density at	Mean decrease of 1 SD not reached	Low
et al., 2000	2 years	18–40 years	lumbar spine, femur, distal radius	at any point; BMD increases slightly	
[34]	Chile and Europe	44 etonogestrel, 29 nonhormonal	distal radius	greater for etonogestrel implant vs. IUD; no site differences in BMD,	
		IUD		slight decrease at femoral neck;	
				estrogen level not associated with	
				BMD change	
Biswas et al.,	Randomized	80 women	Fasting blood levels for	Thyroid T3 and T4 changed little	Intermediate
2000 [37]	comparative study 2 years	18-40 years	total thyroxin, TBG, CBG, testosterone,	from baseline thru the 24 months. TBG declined at 6 and 12 months,	
	Singapore	40 etonogestrel,	SHBG, albumin	and increased at 24 months. Declines	
	01	40 LNG implant	,	in total testosterone observed for both	
				implants; SHBG declined at 6 and	
				12 months, and increased at 24 months	
				for etonogestrel; SHBG decreased at all times for LNG and statistically	
				different from Implanon. Increased	
				cortisol levels observed for both	
				implants. Albumin levels slightly	
D. '	D (00		increased for both, but less than 5%	T (1)
Reinprayoon et al., 2000	Prospective comparative study	80 women	Breast milk production and content, infant	No significant difference in milk	Intermediate
[35]	comparative study 4 months	18-40 years	development, infant	quality or quantity for either method, slightly more milk fat in IUD breast	
	Thailand	40 etonogestrel	etonogestrel exposure	milk; infant etonogestrel exposure was	
[]	1 manana				
[]	Thanana	implant, 40	i i i i i i i i i i i i i i i i i i i	19.86 ng/kg per day at 1 month and	
[]	i nununu	•		19.86 ng/kg per day at 1 month and decreased over time; no difference in head circumference or incidence	

(continued on next page)

Table 3 (continued)

Author, year, reference #	Study design	Population	Outcome measure	Results	Grading
Edwards and Moore, 1999 [41]	Meta-analysis of comparative and noncomparative studies	2791 women	Adverse events, clinical parameters	No significant differences in adverse events between etonogestrel and LNG implants	Low
	2 years Europe, South America, Indonesia	18-40 years		BP levels not significantly different: systolic increase of 0.6 (etonogestrel) and 0.7 (LNG), diastolic increase of 0.6 (etonogestrel) and 0.7 (LNG)	
Suherman et al., 1999 [39]	Prospective, semirandomized study 3 years Singapore	135 women 18–40 years 45 etonogestrel and 45 LNG implant, 45 nonhormonal IUD	Blood chemistry, pregnancy, weight gain, cervical smear cytology, adverse events	No difference: triglycerides, HDL cholesterol, mean lipid profile across methods; total cholesterol and LDL tended to decrease over time with all methods. Apolipoproteins: AI trends for etonogestrel not clear; AII levels constant, and B levels slightly reduced	Intermediate

implants were found with regard to thyroid hormone levels, adrenal function [37], carbohydrate metabolism [38], lipid metabolism [39] or liver function [40]. Similarly, a metaanalysis of safety studies did not identify any significant differences between etonogestrel and LNG implant users with respect to side effects, serious adverse events or impact on blood pressure measures [41]. Fewer than 10% of etonogestrel or LNG implant users experienced side effects related to skin and limbs (7.4% vs. 8.5%), the nervous system (5.2% vs. 7.4%) or psychiatric symptoms (4.3% vs. 5.2%); less than 5% of women using an etonogestrel or LNG implant reported events related to other body systems [41]. A review of medical charts noted that less than one-third of users recorded complaints due to their etonogestrel implant, and primary reasons for discontinuation included irregular bleeding (34%), mood swing (24%), headache (17%), weight gain (12%) and desire for pregnancy (10%) [42].

3.3.5. Pharmacokinetic studies

In pharmacokinetic studies of the etonogestrel implant, nearly 100% bioavailability of etonogestrel was observed over 2 years, with constant and rapid clearance of etonogestrel from the circulation [43], and an inverse relation between serum concentrations of etonogestrel and increasing body weight [43]. Mean etonogestrel concentrations were highest among women weighing <50 kg, followed by women weighing 50–60, 60–70 and >70 kg [10].

4. Discussion

Evidence on the combined hormonal patch, combined hormonal vaginal ring and etonogestrel implant was limited, and research was primarily conducted among presumably healthy women. To date, no studies have examined whether the avoidance of the first-pass effect through the liver with patch or ring use lessens concerns about drug interactions or use of these methods by women with liver conditions. In addition, epidemiological data on the long-term effects of patch, ring or etonogestrel implant were not available.

Two small studies [16,17] reported no serious adverse events resulting from patch use among adolescent users. Moreover, adolescents participating in these studies experienced side effects that were similar in type and frequency to those reported by older women in other studies [18,20]. Limited evidence from two studies that included very small samples of women weighing more than 90 kg [18,19] suggests that patch efficacy declines among women whose weight exceeds 90 kg; however, neither study presented information on safety for women >90 kg. An analysis that pooled the data from these individual studies confirmed these findings [44]. Evidence from two randomized trials among healthy women suggests that patch users experience the same side effects as users of COCs with similar hormone formulations with the exception of breast discomfort, application site reactions and dysmenorrhea. Women who had contraindications preventing them from taking steroid hormones or those with other medical conditions were excluded from the studies, but obese women were included. Further, while clinical study sample sizes were sufficiently large (N>1000 women), few safety studies offered appropriate comparison groups, most relied on self-reported data, no adjustments were made for possible confounding variables and most failed to provide enough information to assess whether selection bias was present or not. Given these limitations, the quality of the body of evidence for both age and obesity conditions received a very low grade, and the indirect body of evidence was graded as intermediate.

For the vaginal ring, we identified no direct evidence regarding women with medical conditions. Indirect evidence among healthy women suggests that the ring does not alter vaginal flora [6,28,29], and one study reported that ring use among women with low-grade squamous intraepithelial

Table 4

Medical eligibility categories for the combined hormonal patch, combined hormonal vaginal ring and etonogestrel implant among women with special conditions [13]

Condition		WHO eligibility cate	gory ^a	
		Combined hormonal patch	Combined hormonal vaginal ring	Etonogestrel implant
Breastfeeding	<6 weeks	4	4	3
	6 weeks–6 months	3	3	
Postpartum	<21 days	3	3	
Smoking \geq 35 years	<15 cigarettes/day	3	3	
	\geq 15 cigarettes/day	4	4	
Multiple cardiovascular disease risks		3/4 ^b	3/4 ^b	
Hypertension	History where BP CANNOT be evaluated or adequately controlled where BP can be evaluated	3	3	
Elevated BP	Systolic 140–159 or diastolic 90–99	3	3	
	Systolic>160 or diastolic >100	4	4	
	Vascular disease	4	4	
Deep venous thrombosis/	History of DVT/PE	4	4	
pulmonary embolism	Current DVT/PE	4	4	3
	Major surgery, with prolonged immobilization	4	4	
Known thrombogenic mutations		4	4	
Current and history of ischaemic heart disease		4	4	I=2, C=3
Stroke (history of cerebrovascular accident)		4	4	I=2, C=3
Known hyperlipidemias		2/3 ^b	2/3 ^b	
Valvular heart disease	Complicated	4	4	
Headaches-migraine	Without aura, <35 years	I=2, C=3	I=2, C=3	
6	Without aura, ≥ 35 years	I=3, C=4	I=3, C=4	
	With aura at any age	4	4	
Unexplained vaginal bleeding	, ,		3	
Breast disease—cancer	Current	4	4	4
	Past and no evidence of current disease for 5 years	3	3	3
Diabetes — nephropathy/ retinopathy/neuropathy or other vascular disease or diabetes of ≥ 20 years' duration	-	3/4 ^c	3/4 [°]	
Gall bladder disease, medically treated or current		3	3	
History of cholestasis, past COC-related		3	3	
Viral hepatitis—active		4	4	3
Cirrhosis	Mild (compensated)	3	3	-
	Severe (compensated)	4	4	3
Liver tumors — benign or malignant	· · · · · · · · · · · · · · · · · · ·	4	4	3
Drug which affects liver enzymes—rifampicin or certain anticonvulsants		3	3	3

I, initiation of method; C, continuation of method.

^a WHO Medical Eligibility Categories: 1 = A condition for which there is no restriction for the use of the contraceptive method; 2 = A condition where the advantages of using the method generally outweigh the theoretical or proven risks; 3 = A condition where the theoretical or proven risks usually outweigh the advantages of using the method; 4 = A condition which represents an unacceptable health risk if the contraceptive method is used.

^b Category should be assessed according to the type, severity, and presence of other cardiovascular risk factors.

^c Category should be assessed according to the severity of the condition.

lesions did not worsen this condition [26]. Evidence from two randomized trials among healthy women showed that ring users experienced similar side effects compared with COC users [27,28], and the incidence of side-effects among healthy ring users in noncomparative studies [6,26] was similar to what was reported in the randomized studies.

Several studies lacked a comparison group, did not randomize subjects, included few subjects (N<300) and did not adjust for confounding or adequately describe subject selection criteria to rule out selection bias; however, the randomized trials elevated the quality of the body of indirect evidence to an intermediate grade.

Evidence from one small study [35] of women using the etonogestrel implant found BMD was not adversely affected among women 18-40 years of age over 2 years. Changes in BMD among etonogestrel implant users were comparable to those observed in women using a hormone-free IUD. Despite an appropriate control group and detailed exposure and outcome assessments, this study provides evidence of low quality because treatment was not blinded, the discontinuation rate was high, the sample size was small (N < 100) and there was no adjustment for confounding variables. According to a study of intermediate quality, lactation and infant development parameters among etonogestrel implant users were comparable to those of hormone-free IUD users over 4 months observation [34]. Limited evidence of very low quality from five women with severe endometriosis found that etonogestrel implant users did not experience any adverse effects and that the etonogestrel implant may offer relief from painful symptoms [34]. Finally, observational studies among healthy women found that users of the etonogestrel implant did not experience significantly different side-effects compared with LNG implant users [37-42]. Despite variations in the types of studies included in the body of indirect evidence, an intermediate grade was assigned owing to two randomized trials among the studies included.

To review this evidence and develop recommendations for medical eligibility criteria for these new hormonal contraceptive methods, an Expert Working Group of 36 participants from 18 countries, including representatives of many agencies and organizations, convened at WHO on 21-24 October 2003. Pending new evidence on the patch or the ring, the Working Group applied the same medical eligibility categories assigned to medical conditions for COCs to the patch and ring. Similarly, for conditions without direct evidence for the etonogestrel implant, evidence on LNG implants was applied. In general, these new contraceptive methods can be used (WHO Category 1) or can generally be used (WHO Category 2) by women with most medical conditions. Table 4 summarizes medical conditions for which women should not use (WHO Category 4) or generally should not use (WHO Category 3) the patch, vaginal ring or etonogestrel implant. The assigned categories should be considered a preliminary, best judgment, which will be reevaluated as new data become available.

Acknowledgments

This review was supported by resources from the World Health Organization, the US Centers for Disease Control and Prevention (CDC), US Agency for International Development (USAID) and the US National Institute of Child Health and Human Development (NICHD).

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agencies.

References

- Wulf D. Sharing responsibility: women, society and abortion worldwide. New York: The Alan Guttmacher Institute; 1999.
- [2] Zieman M. The introduction of a transdermal hormonal contraceptive (Ortho Evra/Evra). Fertil Steril 2002;77:S1–S2.
- [3] Trussell J. Contraceptive failure in the United States. Contraception 2004;70:89–96.
- [4] Burkman RT. The transdermal contraceptive patch: a new approach to hormonal contraception. Int J Fertil 2002;47:69–76.
- [5] Anonymous. First contraceptive patch offers once-a-week dosing. FDA approves Ortho Evra transdermal contraceptive. Contracept Technol Update 2002;23:1–3.
- [6] Roumen FJME, Boon ME, van Velzen D, Dieben TOM, Coelingh H. The cervico-vaginal epithelium during 20 cycles' use of a combined contraceptive vaginal ring. Hum Reprod 1996;11:2443–8.
- [7] Croxatto HB. Clinical profile of Implanon: a single-rod etonogestrel contraceptive implant. Eur J Contracept Reprod Health Care 2000; 5(Suppl 2):21–8.
- [8] Coelingh Bennink H. Presentation of clinical data on Implanon[®]. Contraception 1998;58:75S-7S.
- [9] Croxatto HB, Urbancsek J, Massai R, Coelingh Bennink H, van Beek A, and the Implanon[®] Study Group. A multicentre efficacy and safety study of the single contraceptive implant Implanon[®]. Hum Reprod 1999;14:976–81.
- [10] Huber J. Pharmacokinetics of Implanon[®]. An integrated analysis. Contraception 1998;58:85S-90S.
- [11] Croxatto HB. Mechanisms that explain the contraceptive action of progestin implants for women. Contraception 2002;65:21-7.
- [12] Makarainen L, van Beek A, Tuomivaara L, Asplund B, Coelingh Bennink H. Ovarian function during the use of a single contraceptive implant: Implanon[®] compared with Norplant[®]. Fertil Steril 1998;69: 714–21.
- [13] World Health Organization. Improving access to quality care in family planning: medical eligibility criteria for contraceptive use. 3rd ed. Geneva: WHO; 2003.
- [14] Mohllajee AP, Curtis KM, Flannagan RG, Rinehart W, Gaffield ME, Peterson HB. Keeping up with the evidence: a new system for WHO's evidence-based family planning guidance. Am J Prev Med 2005;28: 483–90.
- [15] Oxman A. Grading quality of evidence and strength of recommendations. BMJ 2004;328:1490-4.
- [16] Rubinstein ML, Halpern-Felsher BL, Irwin CE. An evaluation of the use of the transdermal contraceptive patch in adolescents. J Adolesc Health 2004;34:395–401.
- [17] Logsdon S, Richards J, Omar HA. Long-term evaluation of the use of the transdermal contraceptive patch in adolescents. Sci World J 2004; 4:512–6.
- [18] Audet M-C, Moreau M, Koltun WD, et al. Evaluation of contraceptive efficacy and cycle control of a transdermal contraceptive patch vs. an oral contraceptive: a randomized controlled trial. JAMA 2001;285: 2347–54.
- [19] Smallwood GH, Meador ML, Lenihan JP, et al. Efficacy and safety of a transdermal contraceptive system. Obstet Gynecol 2001;98:799–805.
- [20] Helmerhorst FM, Cronje HS, Hedon B, et al. Comparison of efficacy, cycle control, compliance and safety in users of a contraceptive patch vs. an oral contraceptive. XVI FIGO World Congress of Gynecology and Obstetrics [FC 2.30.06], Washington DC, USA, 3–8 September, 2000.

- [21] Dittrich R, Paker L, Rosen JB, et al. Transdermal contraception: evaluation of three transdermal norelgestromin/ethinyl estradiol doses in a randomized, multicenter, dose–response study. Am J Obstet Gynecol 2002;186:15–20.
- [22] Pierson RA, Archer DF, Moreau M, et al. Ortho Evra[™]/Evra[™] versus oral contraceptives: follicular development and ovulation in normal cycles and after an intentional dosing error. Fertil Steril 2003; 80:34-42.
- [23] Abrams LS, Skee DM, Natarajan J, Wong FA, Anderson GD. Pharmacokinetics of a contraceptive patch (Evra[™]/Ortho Evra[™]) containing norelgestromin and ethinyl estradiol at four application sites. Br J Clin Pharmacol 2002;53:141-6.
- [24] Abrams LS, Skee DM, Natarajan J, Wong FA, Lasseter KC. Multipledose pharmacokinetics of a contraceptive patch in healthy women participants. Contraception 2001;64:287–94.
- [25] Abrams LS, Skee DM, Natarajan J, et al. Pharmacokinetics of norelgestromin and ethinyl estradiol delivered by a contraceptive patch (Ortho Evra[™]/Evra[™]) under conditions of heat, humidity, and exercise. J Clin Pharmacol 2001;41:1301–9.
- [26] Dieben TOM, Roumen RJME, Apter D. Efficacy, cycle control, and user acceptability of a novel combined contraceptive vaginal ring. Obstet Gynecol 2002;100:585–93.
- [27] Oddsson K, Leifels-Fischer B, de Melo NR, et al. Efficacy and safety of a contraceptive vaginal ring (NuvaRing) compared with a combined oral contraceptive: a 1-year randomized trial. Contraception 2005;71:176-82.
- [28] Bjarnadottir RI, Tuppurainen M, Killick SR. Comparison of cycle control with a combined contraceptive vaginal ring and oral levonorgestrel/ethinyl estradiol. Am J Obstet Gynecol 2002;186: 389–95.
- [29] Davies GC, Feng LX, Newton JR. The effects of a combined contraceptive vaginal ring releasing ethinylestradiol and 3-ketodesogestrel on vaginal flora. Contraception 1992;45:511–8.
- [30] Tuppurainen M, Klimscheffskij R, Venhola M, Dieben TOM. The combined contraceptive vaginal ring (NuvaRing[®]) and lipid metabolism: a comparative study. Contraception 2004;69:389–94.
- [31] Magnusdottir EM, Bjarnadottir RI, Onundarson PT, et al. The combined contraceptive vaginal ring (NuvaRing[®]) and hemostasis: a comparative study. Contraception 2004;69:461-7.
- [32] Duijkers I, Killick S, Bigrigg A, Dieben TOM. A comparative study on the effects of a contraceptive vaginal ring NuvaRing and an oral

contraceptive on carbohydrate metabolism and adrenal and thyroid function. Eur J Contracept Reprod Health Care 2004;3:131-40.

- [33] Timmer CJ, Mulders TMT. Pharmacokinetics of etonogestrel and ethinylestradiol released from a combined contraceptive vaginal ring. Clin Pharmacokinet 2000;39:233–42.
- [34] Beerthuizen R, van Beek A, Massai R, in't Hout J, Coelingh Bennink H. Bone mineral density during long term use of the progestogen contraceptive implant Implanon[®] compared to a non-hormonal method of contraception. Hum Reprod 2000;15:118–22.
- [35] Reinprayoon D, Taneepanichskul S, Bunyavejchevin S, et al. Effects of the etonogestrel-releasing contraceptive implant (Implanon[®]) on parameters of breastfeeding compared to those of an intrauterine device. Contraception 2000;62:239–46.
- [36] Yisa SB, Okenwa AA, Husmeyer RP. Treatment of pelvic endometriosis with etonogestrel subdermal implant (Implanon[®]). J Fam Plann Reprod Health Care 2005;31:67-70.
- [37] Biswas A, Viegas OAC, Coelingh Bennick HJT, Korver T, Ratman S. Effect of Implanon[®] use on selected parameters of thyroid and adrenal function. Contraception 2000;62:247–51.
- [38] Biswas A, Viegas OAC, Coelingh Bennick HJT, Korver T, Ratman S. Implanon[®] contraceptive implants: effects on carbohydrate metabolism. Contraception 2001;63:137–41.
- [39] Suherman S, Affandi B, Korver T. The effects of Implanon[®] on lipid metabolism in comparison with Norplant[®]. Contraception 1999;60: 281-7.
- [40] Biswas A, Biswas S, Viegas OAC. Effect of etonogestrel subdermal contraceptive implant (Implanon[®]) on liver function tests - a randomized comparative study with Norplant[®] implants. Contraception 2004; 70:379-82.
- [41] Edwards JE, Moore A. Implanon. A review of clinical studies. Br J Fam Plann 1999;24:3–16.
- [42] Smith A, Reuter S. An assessment of the use of Implanon[®] in three community services. J Fam Plann Reprod Health Care 2002;28: 193-6.
- [43] Wenzl R, van Beek A, Schabel P, Huber J. Pharmacokinetics of etonogestrel released from the contraceptive implant Implanon[®]. Contraception 1998;58:283-8.
- [44] Zieman M, Guillebaud J, Weisberg E, Shangold GA, Fisher AC, Creasy GW. Contraceptive efficacy and cycle control with the Ortho Evra[™]/Evra[™] transdermal system: the analysis of pooled data. Fertil Steril 2002;77(Suppl 2):S13-8.