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Introduction
Systematic reviews of health-care interventions are an
attempt to collate information from all relevant studies
and, if deemed appropriate, combine their results using
meta-analysis.1 This process inevitably brings together
studies that are diverse in their designs (in terms of
outcomes assessed and length of follow-up, for example),
in the specific interventions used (method, intensity, and
duration), and in the types of patients studied
(demographic and clinical characteristics). Thus the
results, based on such a broad range of evidence, can seem
remote from the issue of how to treat individual patients,
and even somewhat irrelevant to clinical practice.2

Nevertheless it is incontrovertible that treatment decisions
should be based on evidence when it exists, and that good
quality systematic reviews provide an essential
mechanism in reviewing available evidence.3 The issue is
how best to bridge the gap between evidence based on
many patients and making decisions about treating
individuals.

The larger randomised trials are, the less their results
will be subject to chance. Many patients are needed to
distinguish true treatment benefits that are clinically
important, but moderate in size, from chance effects.4

Increasing numbers of patients by combining results
across trials provides a principal rationale for meta-
analysis.3 At the other extreme, n-of-1 trials attempt to
isolate effective treatments for a particular individual;5

however, such trials can only be undertaken in specific
clinical situations, for example, for treatments to relieve
symptoms in chronic disorders, and do not provide
evidence about medical policy that can be generalised to
new patients. In between these extremes lies the aim of
targeting interventions by identifying subgroups of
patients most likely to benefit. Subgroup analyses within a
clinical trial investigate the effects of an intervention for
specific groups of patients—eg, defined by their clinical
characteristics—in an attempt to refine how the treatment

might best be used in practice.6 Such analyses are,
however, inevitably plagued by chance effects—both wider
confidence intervals due to the fewer patients involved,
leading to more uncertain inferences, and false positive
results arising from the multiplicity of subgroups typically
investigated.7

Comparing patient subgroups within a meta-analysis
might help to ameliorate the tension between decision
making in clinical medicine and overall statements of
evidence in systematic reviews. Researchers have
suggested that meta-analysis should go beyond estimating
one overall effect,8,9 although this expansion has
drawbacks.10 One aim of meta-analysis should be to
estimate how treatment effectiveness varies according to
patients’ characteristics.11 In this article, we discuss the
extent to which this aim is achievable, and investigate
whether we can progress beyond the general statement
that meta-analytic conclusions should be borne in mind in
clinical decision making. In doing so, we need to
distinguish the relative risk reductions usually
summarised in meta-analyses from their implications for
absolute risks, which describe how much patients benefit.

Conventional meta-analysis
To focus the discussion, we introduce a specific example.
The effectiveness of platelet glycoprotein IIb/IIIa
inhibitors (PGIs) in acute coronary syndromes (non-Q-
wave infarction and unstable angina) has received much
attention, being the subject of a Health Technology
Assessment review,12 National Institute for Clinical
Excellence guidance,13 and a Cochrane systematic review.14

Although PGIs reduce the risk of death and myocardial
infarction in patients undergoing percutaneous coronary
intervention,14 their role in acute coronary syndromes in
which coronary revascularisation is not planned is more
uncertain. We focus on this issue by undertaking a meta-
analysis of six large randomised trials (each >1000
patients) reviewed by Boersma and colleagues.15
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Meta-analyses of randomised trials aim to summarise the effects of interventions across many patients, and can

seem remote from the clinical issue of how individual patients should be treated and which patient groups will

benefit the most from treatment. One method that attempts to address this point entails relating the overall effect in

every trial to summaries of patient characteristics. This is called meta-regression. The interpretation of such analyses

is not straightforward, however, because of a combination of confounding and other biases. Much more useful is to

compare the outcomes for patient subgroups within trials and combine these results across trials. Unfortunately this

method is rarely possible using published information, so analyses of individual patient data from trials are

necessary. Also, although meta-analyses generally summarise an intervention’s effect as a relative risk reduction, the

groups of patients with the greatest absolute risk reduction have the most to gain.
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The six trials (PRISM, PRISM-PLUS, PARAGON,
PURSUIT, GUSTO IV-ACS, and PARAGON-B)16–21

included 31 402 patients with unstable angina or
myocardial infarction without persistent ST-segment
elevation, who were not routinely scheduled for early
revascularisation. PGIs were given intravenously (bolus
plus infusion) and compared with placebo or control
(aspirin or heparin). The PGI drugs used varied between
trials (abciximab, eptifibatide, lamifiban, and tirofiban),
as did the doses and durations of infusion (24 to 120 h).
Myocardial infarction was defined objectively in every
study, with slightly varying criteria for cardiac enzyme
concentrations. We consider the risks of death and
myocardial infarction up to 30 days after randomisation,
since all trials reported results at this timepoint. A total
of 3530 events occurred, an average risk of 11%.

The meta-analysis yields an overall odds ratio of 0·91
(95% CI 0·85–0·98, p=0·02, figure 1). Since relative risks
and odds ratios are similar for risks up to about 20%, this
result corresponds to a 9% reduction in risk from the use
of PGIs. The analysis is based on an assumption of a
common effect across all trials. The failure to show direct
statistical evidence against this assumption (the test for
heterogeneity is not significant, p=0·33), does not
however mean that the underlying odds ratio in every
trial is in fact the same. The test for heterogeneity lacks
statistical power22 and cannot distinguish true differences
between the results in the different trials from chance
effects. Indeed, in view of the clinical diversity of the
trials, an assumption of a common effect is highly
implausible. From a clinical standpoint, it would be
convenient to assume that the 9% reduction in risk
applies to all patients with acute coronary syndromes.
Unfortunately, this assumption would be unjustified, not
only because the test for heterogeneity lacks power but
also because the test only addresses differences between
trials (for example because of varying treatment
protocols) rather than potential differences between
patients with varying characteristics.

Absolute risks are more informative for clinical
decision making than are relative measures such as the
relative risk or odds ratio.23 The absolute risk difference
estimates the risk reduction that is expected on average
for every patient. For the six PGI trials, a meta-analysis
of the differences in the proportions of patients dying or
having a myocardial infarction within 30 days yields an
overall absolute risk difference of 0·89% (95% CI 
0·17–1·60) in favour of PGIs. This finding corresponds
to an expected number needed to treat to prevent one
event of 112 (95% CI 63–590). In this case, we might
argue that the absolute risk differences are as likely to be
consistent between the trials as are the odds ratios, since
the period of follow-up for the outcome considered is
identical. In general, and especially for trials with
different follow-up periods, the relative risk or odds ratio
is probably more consistent between trials and patients.24

Extrapolation to a specific patient group then involves
applying the relative risk reduction from the meta-
analysis to the group’s baseline level of risk.25–27

Conventional meta-analysis thus does not effectively
identify groups of patients who might benefit most from
an intervention. To do this, extent of treatment benefit
should be related to patients’ characteristics. On the
basis of published data, one way to link benefit to
characteristics is to relate the treatment effect in every
trial to some average characteristic of the patients in that
trial (such as mean age or proportion of women). Such
an analysis is called meta-regression,28 which, although
straightforward to do, is subject to substantial difficulties
in interpretation.

Meta-regression
Meta-regression aims to relate the treatment effects
recorded in different trials to the overall characteristics
of those trials. We will consider the example of whether
the effectiveness of PGIs is different between men and
women. The basic characteristics of patients recruited
into trials are usually reported fully in publications. For
example, we can relate the odds ratio noted in every trial
to the proportion of women in that study (figure 2).
Meta-regression assesses the strength of the relation
between the two. In this case, the estimated log odds
ratio for the effect of PGIs is estimated to increase by
0·044 (SE 0·024, p=0·06) for every 1% rise in the
proportion of women. This result could be taken to
imply that the odds ratio for women is 81-times that in
men, corresponding to studies of 100% women and 0%
women respectively (exponential of 100�0·044=81).
This conclusion is clearly totally implausible, even
though the relation is of borderline significance.

First, we note some technical issues about undertaking
meta-regression, since they are sometimes incorrectly
done.29 Odds ratios or relative risks are usually log-
transformed because they can more justifiably be
regarded as normally distributed. The regression also has
to be weighted, taking into account not only the precision
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Study PGI
(n/N)

Control
(n/N)

PRISM 94/1616 115/1616

PRISM-PLUS 114/1118 96/797

PARAGON 172/1524 89/758

PURSUIT 872/6209 745/4739

GUSTO IV 450/5202 209/2598

PARAGON-B 278/2628 296/2597

Combined (common effect) 0·91 (0·85 to 0·98)

0·5 1·0 2·0
Favours PGI Favours control

Odds ratio (log scale)

Figure 1: Meta-analysis of six trials of platelet glycoprotein IIb/IIIa inhibitors (odds ratios  [95% CI])
n=number of deaths and myocardial infarctions up to 30 days after patients were randomly assigned treatment or
control. N=total number of patients.
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of every trial’s result (as shown by the size of the circles in
figure 2) but also the extent of residual differences
between their results not attributable to the characteristic
being considered.30 Statistical software to do such analyses
is now widely available.31 To investigate directly whether
the treatment effect (odds ratio or absolute risk difference,
for example) varies with the baseline risk of the patients in
the different trials is tempting. However, the baseline risk
can usually only be measured by the reported risk in the
control groups, which directly enters the calculation of the
treatment effect. Therefore, simple meta-regression can
give biased results.32 Although more appropriate statistical
methods can be used for such analyses,33 results are not
necessarily robust.

Even if meta-regression is undertaken correctly from a
technical point of view, relations with averages of patients’
characteristics are potentially misleading. First, meta-
regression describes observational relations across
studies, which are subject to confounding by other
characteristics that vary between the trials. Even though
every trial is randomised, meta-regression is only the
study of the epidemiology of trials34 and relations may well
not be causal. For example, many (and probably more
important) characteristics vary across the PGI trials than
merely the proportion of women, but which might be
correlated with it. Thus, the relation of the odds ratio with
the proportion of women could be attributable to other
factors. A second difficulty is the limited range of
characteristics when they are averaged over all the patients
in a trial. For example, across the six PGI trials the
proportions of women only vary from 32% to 38%,
whereas individual patients are either 0% or 100% female!
Similarly, mean ages vary from 62 to 66 years, whereas
the individual patients’ ages have a much wider spread
(typically 45–85 years), suggesting that little statistical
power exists to detect relations by meta-regression.35 In the
extreme case, in which the proportions of women are
identical in every trial, there is no possibility of detecting a
relation. One final difficulty is that, in any systematic

review, many characteristics (of trials or their patients)
could be investigated by meta-regression, but there are
usually only a few trials.36 This fact leads to the likelihood
of data dredging and the reporting in publications of only
significant findings, which are, therefore, likely to be false
positives—misleading for both clinical practice and future
research.30

Thus, there are many reasons why meta-regression
should be avoided. Its use should be restricted to
investigation of differences between trials that relate to
trial features (such as treatment regimen) and patients’
characteristics that vary substantially across trials and not
within trials, when these features have been prespecified
and many trials are available.36 Although data for average
patients’ characteristics are usually available, and meta-
regression is easily undertaken, this does not mean that
findings can be reliably interpreted. To provide a way of
investigating patients’ characteristics we have to move
away from looking at relations across trials, to inspection
of relations within trials. So we need to compare
subgroups of patients within every trial (eg, men vs
women) and then combine these results over trials. 

Meta-analysis of subgroup differences
Most large trials report whether certain baseline patients’
characteristics are effect modifiers, that is whether the
treatment effect varies according to these characteristics.
For example, treatment effects in men and women, or by
age group, are calculated and presented separately.
Evidence for differential effects should be assessed by a
statistical test of interaction.37 In principle, we should be
able to extract this information from every trial—eg,
calculate the difference in (log) odds ratios between
subgroups in every trial and undertake a meta-analysis of
these differences across all trials to assess the evidence
for, and extent of, any overall treatment interaction.
However, to undertake this analysis, sufficient numerical
information must be present in the publication, enabling
calculation of both the log odds ratios within subgroups
and their SEs, which is uncommon in practice.

In the six PGI trials,16–21 to what extent is such within-
trial information on the sex difference in treatment effect
available? Only one trial gave the basic numerical
information from which the relevant quantities could be
calculated for men and women. Another did not present
any subgroup findings, but the remaining four provided
some information for men and women separately.
However, these data were presented as diagrams rather
than tables, with commentary in the text restricted to the
issue of significance of interactions. For characteristics
other than sex, greater problems arose. For continuous
characteristics, such as age, or more complex categorical
variables, such as ECG findings, different groupings were
used in the trial reports. Moreover, the variables chosen
for presentation were not consistent between trials. For
example, of the five trials presenting any subgroup
findings, only two presented subgroup results by weight,
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Figure 2: Meta-regression relation of log odds ratios across trials
Size of every circle is proportional to the precision of each log odds ratio estimate.
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another two by smoking category, and one by previous
use of � blockers. A concern here is that the selection of
variables for presentation might have been determined by
the results obtained, leading to false positive interactions.
A final difficulty was that the outcome chosen for detailed
subgroup analysis varied substantially between the trials:
different combinations of death, myocardial infarction,
refractory ischaemia, and unstable angina were used, at
timepoints ranging from 2 days to 6 months.

The PGI trials example is no doubt typical. Even if one
extracted as much information as possible out of the
subsidiary publications from every trial, we would be
unlikely to resolve the difficulties. Without sufficient and
consistent information from every trial, a meta-analysis of
within-trial subgroup findings, which would overcome
some of the worst drawbacks of meta-regression, cannot
be undertaken. Two solutions can be considered. The first
is that tabulated information in a consistent format is
requested from every set of trialists. Such a requirement
might be successful, but sharing of individual patient data
from different trials is usually more fruitful. This has
many additional advantages38 including the possibility to
check basic data and analyses, to improve consistency
between trials (for example in terms of definition of
outcomes), to undertake extra analyses, and to consider
confounding of subgroup effects by other individual
characteristics. We now describe an individual patient
data meta-analysis in the context of the PGI trials.

Individual patient data meta-analysis
The trialists from the six large PGI trials undertook a
collaborative project in which data for every patient were
collated centrally and analysed.15 Again we focus on the
30-day outcome of death or myocardial infarction. A
simple meta-analysis based on these data gave the overall
odds ratio noted before, that is 0·91 (95% CI 0·85–0·98).
Now, however, the results by subgroup could be extracted
in a consistent manner. For example, by logistic
regression,15 the estimated odds ratio was 0·81 for men (a
beneficial effect of PGIs) and 1·15 for women (an
apparent adverse effect) as shown in figure 3. This
differential treatment effect was highly significant
(p<0·0001, a test of interaction based on a meta-analysis
of within-trial differences). The investigators also

reported whether 12 other baseline characteristics
modified the overall odds ratio. None was as convincing
as the sex difference, but there was some evidence that
the benefit of PGIs was greater in younger people
(p=0·10) and in those without ST-segment depression
(p=0·06).

How should such interactions, based on individual
patients’ data, be judged? One consideration is the extent
to which the results are compatible with chance, which
depends not only on the p value for the interaction test but
also on how many characteristics have been investigated
(which might be more than the number reported). With a
simple adjustment for multiple testing,39 one might
reasonably regard the sex difference in the PGI trials as
most unlikely to have arisen by chance, but judge that the
differential effects by age and ST-segment depression are
unconvincing because at least 13 characteristics have been
investigated. The magnitude of the sex difference might
be exaggerated merely because it was the most extreme
among many interactions investigated. A second issue is
the extent to which the findings are biologically plausible,
although such arguments are prone to post-hoc
speculation. Some researchers argue that qualitative
interactions (treatment effects in opposite directions) are
intrinsically implausible. A third point is whether the
relation revealed might be attributable to other
characteristics. In the case of the sex difference for the
effect of PGIs, one relevant consideration is the
concentration of troponin, a marker of the extent of
myocardial damage. Boersma and colleagues15 argue that,
since men generally had higher concentrations of
troponin than women, a sex difference might be caused by
differential effects of PGIs in those with different levels of
myocardial damage. However, men also had other
characteristics that differed from women, such as age and
prevalence of a history of myocardial infarction and
diabetes.

With individual patients’ data we can, in principle,
investigate this type of confounding. By adjustment
simultaneously for the potential confounding variables,
one can see whether the sex difference becomes
compatible with chance. In the case of the PGI trials, this
possibility was not the case, with one exception. When
adjusting for baseline troponin concentration, the sex
difference was no longer evident.15 Although such
findings are observational in nature, and can be subject
to residual confounding and measurement error,40 in this
case troponin might be the more important moderator of
the effect of PGIs than sex per se. However, troponin data
were only available for 35% of the entire population, and
when restricting the analysis to this subgroup the
unadjusted sex difference was no longer evident. Had full
data for troponin been available from the trials, the
confounding of sex and troponin concentration could
have been fully addressed. With incomplete data
available, the answer remains uncertain. This difficulty is
typical of other individual patient data meta-analyses,
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Men 0·81 (0·75–0·89)

Women 1·15 (1·01–1·30)

0·5 1·0 2·0
Favours PGI Favours control

Odds ratio (log scale)

Figure 3: Odds ratios (95% CI) of death or myocardial infarction in men and
women based on individual patient data
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when different baseline data have been obtained in the
included trials.

The technical demands of individual patient data meta-
analyses are substantially greater than are those of meta-
analysis or meta-regression.41 Indeed, statistical methods
need to be developed in this area. In general, we would
suggest that the estimated relations between the extent of
treatment benefit and patients’ characteristics are derived
only from within-trial information, so that confounding
because of differences between trials is avoided. As
discussed above, such confounding is one issue that
affects meta-regression. To avoid this problem,
interaction effects (eg, the difference between men and
women) are calculated in every trial separately and then
combined over trials. When some studies contain only
women or only men, they contribute no within-trial
information to the evidence about a sex difference in
treatment effect and so would be omitted from the
analysis. Such a method is designed to reduce bias, at the
expense of losing some precision. Some multilevel model
methods of analysis do not clearly separate within and
between trial information, and can consequently result in
misleading conclusions.42

The conclusions from the PGI trials’ individual patient
data meta-analysis might reasonably be that the
proportionate risk reduction for men of 19% seems to
apply reasonably uniformly across patient subgroups. For
women, the results do not seem encouraging, with a
reported 15% increase in risk. Whether this finding is
attributable to an intrinsic difference between the sexes,
or to the generally less severe myocardial damage in
women, remains uncertain.

Discussion
Identification of patient groups who benefit most from an
intervention is never going to be easy, since it is a task for
which enormous quantities of randomised evidence are
necessary. Even in large trials, apparent subgroup
differences can result merely from chance. Meta-analyses
of large trials based on individual patient data allow
subgroups to be contrasted within trials, and for these
results to be combined across trials, producing more
reliable evidence. Individual patient data also allow
investigation of whether treatment interactions associated
with one clinical characteristic are potentially confounded
by another. Attempts to target treatments by meta-
regression of overall trial results and averages of patients’
characteristics are generally misleading. For example, in
the PGI trials, a completely unrealistic estimate of the sex
difference in treatment effect was obtained from a meta-
regression across trials.

Clinical decisions for the individual patient, and
medical policy decisions, have always to be made, at least
to some degree, on the basis of incomplete or insufficient
evidence. When we do not have evidence about treatment
effects in specific subgroups of patients, these decisions
have to be made with evidence about overall effectiveness.

We should only make different decisions for specific
patient groups when strong evidence supporting these
decisions becomes available. For policy decisions at a
national level, cost-effectiveness has to be considered in
addition to clinical effectiveness.43 A treatment should be
targeted at those for whom it is most cost effective, ideally
individuals who get the greatest clinical benefit with the
least use of medical resources. Generally, we are far from
having sufficient information to make policy decisions on
this basis.

Evidence of generally consistent relative risk reductions
has been striking in some meta-analyses. For example,
antiplatelet treatment produced about a 25% relative
reduction in risk of serious vascular events across a wide
range of patient groups,44 and fibrinolytic treatment after
myocardial infarction showed about a 20% reduction in
mortality.45 In such situations, the benefit for specific
patient groups depends crucially on their baseline risk;
those with low baseline risk have little to gain, but those
with high baseline risk have much to gain. There are,
however, some exceptions to consistent relative effects:
the PGI trials apparently showed beneficial effects in men
and adverse effects in women; for antiplatelet treatment,
there was a lesser proportionate reduction in the risk of
serious vascular events in patients with acute stroke than
in other high risk groups;44 for endarterectomy in patients
with carotid stenosis, benefit was restricted to those with
at least 70% stenosis.46

Even when relative risk reductions are used as the
summary of effects in individual patient data meta-
analysis, absolute risk reductions should be explicitly
estimated for specific patient groups.44 Estimation of the
baseline risks for different patient groups is
conventionally not part of meta-analyses. Nevertheless, it
can be done, with either data from the trials themselves46

or from external observational studies.47 Such analyses
would add to the clinical usefulness of the usual meta-
analytic summaries of relative risk reductions.48 Individual
patient data meta-analysis should be seen as more than
merely a gold standard method for doing simple meta-
analysis. For example, patient subgroups can be
consistently defined and systematically contrasted for
evidence of possible differential treatment effects. Pre-
specification of a limited number of such patient
subgroups can help guard against the risk of false positive
results. Individual patient data meta-analyses would then
be explicitly designed to directly address the best targeting
of interventions.
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